PREPAREDNESS-----

Metrology for mobile detection of ionising radiation following a nuclear or radiological incident.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Non-governmental dosimetry networks - metrological validation of measurement data

Miloš Živanović¹, Viacheslav Morosh², Nikola Kržanović¹, Giorgia Iurlaro³, Steven Bell⁴, Marco Sangiorgi⁵, Gordana Pantelić¹, Olivera Ciraj Bjelac¹, Miloš Đaletić¹, Luciano Sperandio³, Sotiris Ioannidis⁴

1) VINS, 2) PTB, 3) ENEA, 4) NPL, 5) JRC

Miloš Živanović milosz@vinca.rs

• Work package 3 within 16ENV04 Preparedness project studies the non-governmental dosimetry networks

- Detailed information on existing networks is gathered, including methods of data processing, mapping and online data transfer
- 16 types of dosimeters used in non-governmental networks (MINN) are acquired and a study of metrological properties is conducted
- New dosimetry systems are developed

- Dosemeters, spectrometers and other detectors are spread across the territory and communicate data in real time to the server
- The data from radiation networks allow for better emergency response
- Official, governmental radiation networks are established in most countries

Dosimetry networks - EURDEP

Search | Contact | Cookies | Legal Notice | Europa Analytics | English (en)

- In addition to official networks, there are also non-governmental networks
- Non-governmental networks are networks run by private individuals, companies or other subjects
- Non-governmental networks for ionising radiation are not regulated

- Non-governmental networks for ionizing radiation monitoring are in expansion, especially since the Fukushima accident
- In 2020, anybody can buy a dosimeter, upload the data, create a website or publish data on Facebook
- In many places, density of non-governmental networks is higher than the density of official networks

• Non-governmental networks data is in most cases not validated

•Most of the users are laymen, with no background in radiation protection

- In some networks, users are allowed to upload data manually
- A malicious individual could intentionally upload fake data

- Data provided by non-governmental networks have a potential to cause unwarranted panic, but also to be used by official authorities for decision making
- In preparedness project, the accent was on metrological properties of the devices, but research on other aspects is needed

• Some of the non-governmental networks with operational measurement stations in Europe:

http://www.gmcmap.com/ http://www.radmon.org/ http://radioactiveathome.org/map/ http://www.uradmonitor.com/ http://safecast.org/tilemap

Dosimetry networks - GMC

Dosimetry networks - uRad

Dosimetry networks - uRad

↔ Home

器 Forum

• 16 types of MINNs were sourced and commissioned by 4 partners

Sourced by	Manufacturer	Туре
РТВ	GAMMA-SCOUT GmbH	GammaScout (LND 712)
РТВ	GQ Electronics	GMC 600 (SBT 11A)
РТВ	Safecast	BGeigie Nano (LND 7317)
РТВ	uRADMonitor	Urad Modell A (SBM 20)
NPL	International Medcom	IMI Inspector Alert V2 (LND-7317)
NPL	International Medcom	Rad100 (LND-712)
NPL	uRad	A3 (SI-29BG)
NPL	MyGeiger	ver. 3 PRO (SBM-20)
ENEA	Quarta	QuartaRAD RD1212-BT Detector
ENEA	GQ Electronics	Plus GQ Electronics GMC-300E Plus
ENEA	MAZUR Instrument	PRM-7000 Geiger Counter
ENEA	S.E. International, INC	SEINTL Monitor 200 Detector
VINS	GQ Electronics	GMC-320 Plus
VINS	GQ Electronics	GMC-500 Plus
VINS	Magnasci	uRADMonitor model KIT1

- Different tests were performed on the MINNs:
 - linearity test
 - energy dependence
 - inherent background determination
 - response to secondary cosmic radiation
 - plume simulation
 - tests in climate chamber

Dosimeter type 1 linearity

Dosimeter type 2 linearity

MINN testing

Dosimeter type 1 energy dependence

MINN testing

Dosimeter type 2 energy dependence

UDO II test

- Dosimeters are positioned in an underground laboratory in a salt mine
- Reference value of H*(10) is 1.5 nSv/h
- Inherent background of dosimeters is determined

Lake test

- Dosimeters are positioned on a floating platform on a lake
- Background consists almost exclusively from cosmic radiation
- Response to cosmic radiation is determined

MINN testing

MINN testing

Lake test – inherent background was subtracted from MINN measurements H*(10) (nSv/h)

Plume simulation

- Dosimeters are positioned at the perimeter of a circle centred at the source holder
- In the first step, background is measured by all the devices
- 6 sources are sequentially exposed (30 minutes each)
- At the end, background is measured again
- Response of dosimeters to small changes of H*(10) is determined

Plume simulation (Sources 1-3 are Cs-137, 4 and 6 are Co-60, 5 is Ra-226)
*background was subtracted from source measurements

• Climate chamber

Climate chamber tests

- normal conditions: +20 °C and 65% RH
- cold and dry: -20 °C and 0% RH
- warm: +50 °C and 50% RH
- humid: 30 °C and 95% RH
- normal conditions again

Climate chamber tests – 4 types commissioned by VINS

- normal conditions: +20 °C and 65% RH all instruments are OK
- \bullet cold and dry: -20 °C and 0% RH all instruments show increas of response (up to 10 %)
- warm: +50 °C and 50% RH 2 types show 0 indication, two are OK
- humid: 30 °C and 95% RH all instruments are OK
- normal conditions again all instruments are OK, none are damaged

(Preliminary) conclusions

- Studied types of MINNs do not meet all the criteria set by relevant standards
- Energy dependence represents the most serious problem
- However, many dosimeters used by professionals have comparable characteristics, and GM tubes are used even in some early warning networks

(Preliminary) conclusions

- MINNs are sensitive to small changes of doserate
- Some of the MINNs fail in very warm weather
- Can we use the data from non-governmental networks?

PREPAREDNESS-----

Metrology for mobile detection of ionising radiation following a nuclear or radiological incident.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Thank you for your attention!