

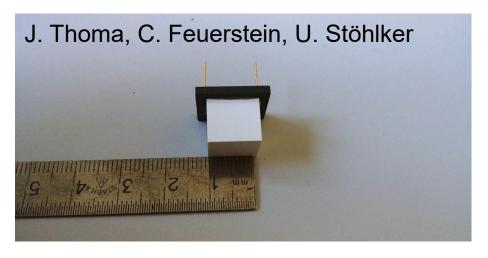
PREPAREDNESS-----

Metrology for mobile detection of ionising radiation following a nuclear or radiological incident.

Preparedness – WP3: Low-cost spectro-dosimeters

EMPIR Preparedness – Online Stakeholder Workshop

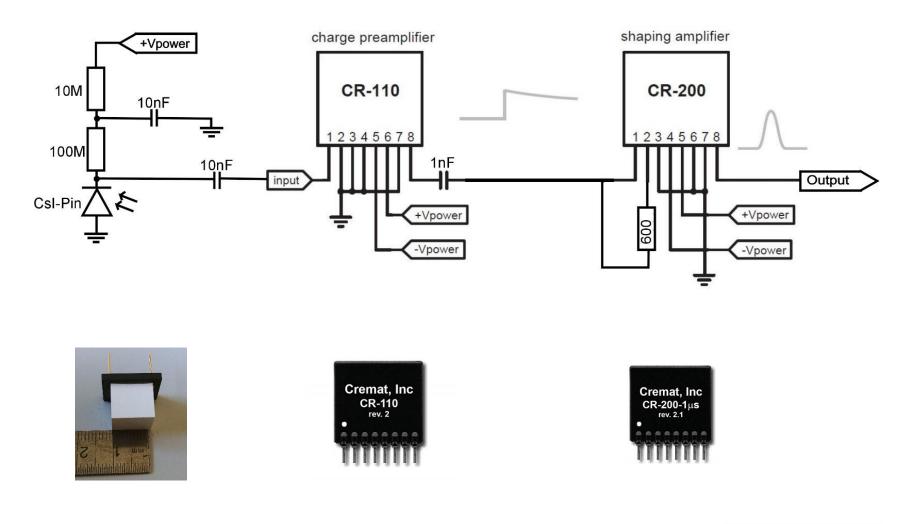
Steven Bell National Physical Laboratory (Teddington, UK) steven.bell@npl.co.uk


10th December 2020

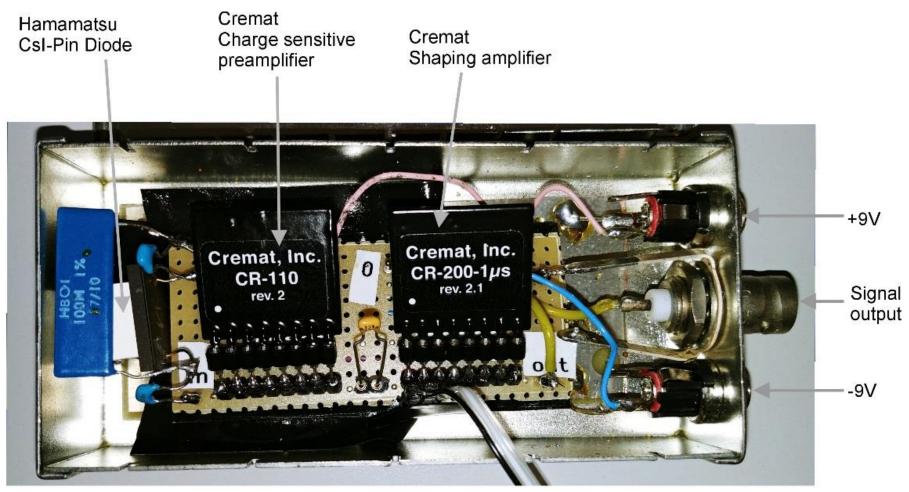
A3.3.2

Development of a low-cost dose rate detector

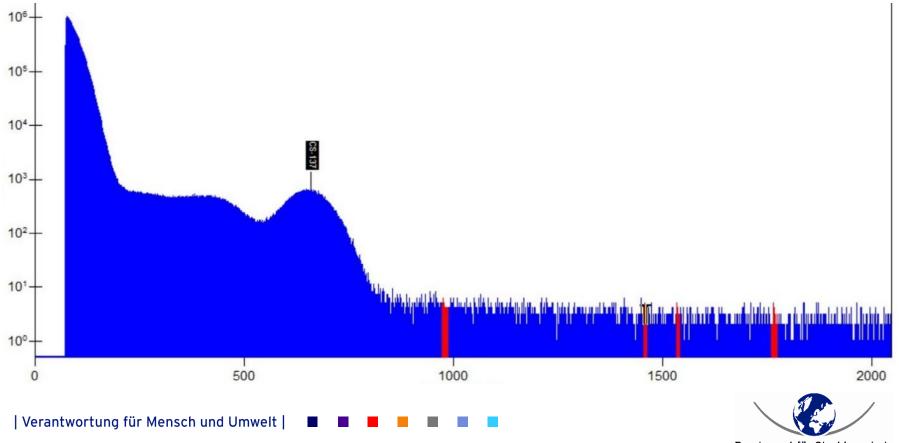
Basic design principle for the low-cost detector was to select a material with low but sufficient energy resolution to allow to compensate energy dependent sensitivity.


Therefore, the S 12425-10 PIN photodiode with attached 1cm3 CsI crystal from Hamamatsu was selected.

The signal is prepared using an anlog amplifier/shaper. The output of the preamplifier is connected to a digital unit which includes 8 comparators, each connected to a counter. Each counter has an I2C interface. A Raspberry by is used to read the data from the counters and to calculate an energy compensated dose rate by application of the band method.



Design of the analog preamplifier/shaper


Analog preamplifier/shaper

Measurements to characterize the CsI-PIN diode and the preamplifier/shaper

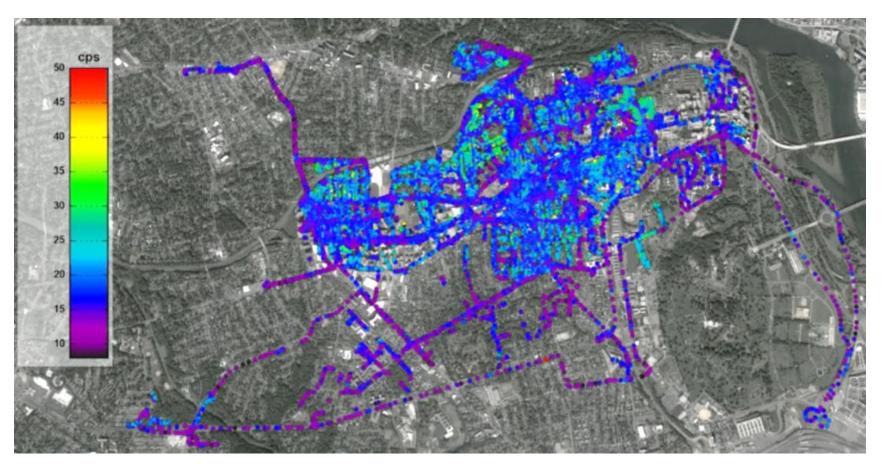
The spectrocopic capabilities of the CsI-PIN diode were investigated using Cs-137, Co60, Eu-152 and Lu-176 sources.

The detector was powered by +9V/-9V and connected to the MCA (Canberra Inspector-1000), spectra were recorded using Genie-2k.

Bundesamt für Strahlenschutz

Kromek D3S

- Dual gamma and neutron detector for homeland security
- Designed to be worn by government employees (police, fire, postal etc) for real-time radiation mapping of urban environment


842	∀	lere	omek ⁺
o O o	₽		artier.
● ● ● ● ● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	RECEIVING DATA		
9	×		
	arch	0	
s 25°	Stop Search	16	
53.9cps 25°C			
q, 111	<u> </u>		

Specifications:		
Gamma detector :	CsI(TI)-SiPM, 2" x 1" x 1/2"	
Energy resolution:	7% (at 662 keV)	
Energy range:	30 to 3,000 keV	
Sensitivity:	500 cps/µSv/h	
Dose rate limit:	15 µSv/h (at 662 keV)	
Connectivity:	Micro USB, Bluetooth®	
Neutron detector:	LiF:ZnS-SiPM, 32 mm × 100 mm	
Count rate limit:	5,000 cps	
Size:	132 × 80 × 23.5 mm ³	
Weight:	237 g	
Battery life:	12 h	

Kromek D3S

Radiological "heat" map of urban area produced by centralised database collecting data from multiple D3S units (DARPA trial, Washington DC)

Kromek D3M

- Modified version of D3S
- Photodiode used for high dose-rate measurement
- Other improvements:
 - IP65 rating
 - Improved battery life (24 hours)
 - Indoor tracking for GPS denied areas
 - Local display and alert (OLED Screen)
 - Vibrational and Sounder alarm
 - Internal storage (8GB MicroSD card)
 - Improved Linearity and stability for reduced false alarm rates
 - Low Energy Bluetooth (BLE)
- Preliminary dosimetric measurements made at NPL
- D3M will be produced for purchase and use by members of the public

Preliminary measurements – Dose range and accuracy

kromek^{**}

Plotted are the responses for Cs-137 (blue: scintillator dose reading, orange: high-dose sensor count rate)


The scintillator dose rate was accurate at low dose rates for both Cs-137 and Co-60, staying within 10% up to 50 μ Sv/hr

ю

True dose rate / uSv/hr

rate / uSv/hr

Gamma dose

True dose rate / uSv/hr

Thank you for listening!

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

steven.bell@npl.co.uk