

Metrology for mobile detection of ionising radiation following a nuclear or radiological incident.

WP3: Monitoring of ionising radiation by nongovernmental networks

Task 3.2: Feasibility study on the use of non-governmental dosimetry data for preparedness purposes

EMPIR Preparedness – Online Stakeholder Workshop, 10.12.2020

Viacheslav Morosh, 6.3 Radiation protection dosimetry

PBNon-governmental networks

- Safecast
- µRadMonitor
- GMC map
- Radmon
- Radiation network
- Radioactive@home

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

PTB MINN type selection

MINN = <u>Measuring</u> Instrument used in <u>Non-governmental</u> <u>Networks</u>

Example of MINN	Supplier	Networks
uRAD Monitor Model A	Magna SCI	uRad Monitor
GMC-600	GQ Electronics	GMC map
bGaiger Nano	Safecast	Safecast
Radalert 100	International Medcom	Radiation Network/Safecast
GMC-320 Plus	GQ Electronics	GMC map / Radmon
GMC-500 Plus	GQ Electronics	GMC map / Radmon
uRAD Monitor model KIT1	Magna SCI	uRad Monitor
Monitor 4 Geiger Count KIT	S.E. International Inc.	Radiation Network
GMC-300 Plus	GQ Electronics	GMC map
RADEX 1212	Quarta-RAD Inc.	GMC map/ RadexRead Radiation Mapping
PMR 7000	Mazur	Radiation Network
Monitor 200	S.E. International Inc.	Radiation Network
uRAD Monitor Model D	Magna SCI	uRad Monitor
MyGeiger ver.3 PRO DIY	RH Electronics	Radmon
Inspector Alert	International Medcom	Radiation Network
Rad 100	International Medcom	Radiation Network/Safecast

Final list of 16 MINN types for the study:

MINN type	GM tube type
Gamma Scout	LND 712
Rad 100	LND 712
RadAlert Monitor 200	LND 712
Monitor 4 KIT	LND 712
µRAD Monitor A3	SI-29 BG
GMC 500+:	SI-29 BG and M 4011
Mazur PRM-7000	LND 713
µRAD Monitor A3.4	SBM 20
MyGeiger ver.3 pro	SBM 20
µRAD Monitor KIT1	SBM 20
Radex RD 1212 BT	SBM 20
Soeks Quantum	2 x SBM 20-1
Radex RD1706	2 x SBM 20-1
Radex RD1503+	SBM 20-1
GMC300E+	M 4011
GMC320+	M 4011
bGeigie Nano	LND 7317
Inspector Alert V2	LND 7317

PTB MINN type selection

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

PTB Reading of a MINN

$$\dot{G}_{MINN} = \dot{M}_0 + q_{terr} \cdot \dot{H}_{ref, terr}^* (10) + q_{SCR} \cdot \dot{H}_{ref, SCR}^* (10) + q_{art} \cdot \dot{H}_{ref, art}^* (10)$$
Inherent background Terrestrial radiation Secondary cosmic radiation Artificial radiation

$$\begin{split} \dot{M}_0 &= \text{inherent background or self-effect of the instrument} \\ q_{SCR} &= \text{response to secondary cosmic radiation} \\ q_{TR} &= \text{response to terrestrial radiation} \\ q_{Art} &= \text{response to artificial radiation (function on E and direction of radiation)} \\ \dot{H}^*(10)_{ref,SCR} &= \text{ambient dose equivalent rate due to secondary cosmic radiation} \\ \dot{H}^*(10)_{ref,terr} &= \text{ambient dose equivalent rate due to terrestrial radiation} \\ \dot{H}^*(10)_{ref,art} &= \text{ambient dose equivalent rate due to artificial radiation} \end{split}$$

(UDO II, lake platform, plume simulation)

Reference and Measuring Sites at the PTB (Working Group 6.32)

Reference site

Continuous measurement of separated contributions to $\dot{H}^*(10)$ in the environment caused by

terrestrial H^{*}(10)_{terr} and
 secondary cosmic radiation (SCR) H^{*}(10)_{SCR}

Plume simulation setup

Simulation of a radioactive plume for quality assurance of dosimetry systems and measurement methods.

➢ terrestrial, H^{*}(10)_{terr}
 ➢ SCR, H^{*}(10)_{SCR}
 ➢ Artificial, H^{*}(10)_{art}
 Cs-137, Co-60, Ra-226

Measuring site for secondary cosmic radiation

✓ No terrestrial radiation.

(Climatic cabinet later)

UDO II underground laboratory at a depth of 430 m

Calibration and characterization of measuring instruments

✓ No SCR
✓ No terrestrial radiation

MINNs were exposed to the laboratory background of (1.5 ± 0.2) nSv/h. Measurement duration was ca. 4 hours.

$$\dot{G}_{MINN} = \dot{M}$$

- Self-effect range: 10 to 55 in nSv/h.
- GM tubes of same type or comparable similar size self-effect
- larger sensors → higher self-effect (not valid for "pancake" type!)

PTB Response to secondary cosmic radiation (SCR)

Terrestrial radiation is "switched off". No artificial radiation.

```
MINN exposed to only SCR!
```

Measurement duration: ca. 1.5 h

 $\dot{G}_{MINN} = \dot{M} + q_{SCR} \cdot \dot{H}^*(10)_{ref,SCR}$

Almost all MINNs have an overresponse (>150 %) when exposed to SCR. Inherent background has been subtracted.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Plume simulation

Contribution to the MINN readings due to terrestrial and SCR are const over the whole testing period:

with $\dot{G}_{BG} = \dot{M}_0 + q_{terr} \cdot \dot{H}^* (10)_{ref, terr} +$ $+ q_{SCR} \cdot \dot{H}^*(10)_{ref,SCR}$

Performance is dependent

Most of the MINNs under-

estimate the $\dot{H}_{ref, art}^{*}(10)$

Physikalisch-Technische Bundesanstalt

for all nuclides in test.

on nuclide.

Used gamma ray sources: Cs-137, Co-60, Ra-226

Source

H*(10) :

μSv/h

 $\dot{H}^{*}(10)_{art'}$ 0.2

0.25

0,15

0,1

0.05

0.5 0.1

200

150

Climatic test

MINN output:

Most tested MINN types showed no significant deviations!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

PTB Linearity of the response

Characterization at partner institutions in accordance with ISO 4037-1 standard 0.90 MINN raw data after complete irradiation Unexplainable decrease Incident gamma ray 1000000 0.80 10000 0.70 0.60 1000 Ġ, cpm Response 0.50 Data for analysis 0.40 100 --2 0.30 **→**-3 0.20 0.10 500 timestep, min 0.00 Incident gamma ray 10 1 100 1000 0 \dot{H}^{*}_{ref} (10), µSv/h Example 1 Decrease due to dead time effect \rightarrow no or "gentle" correction! 0.80 0.70 0.60 0.50 Response ---1 0.40 • 2 0.30 • 3 gamma ra 0.20 0.10 0.00 0.1 10 100 1000 1 Example 2 \dot{H}^{*}_{ref} (10), µSv/h

Nationales Metrologieinstitut

MINE

PTB Energy dependency of the response

Characterization at partner institutions in accordance with ISO 4037-1 standard

Strong energy dependence at low energies!

- Information based on non-governmental measurements using MINNs should be used with great precautions
- (e.g. fake data, malfunctioning MINNs, bad energy response, proper location, outdated data).
- Large amount of data might be useful to track radioactive plumes and to detect radioactive contaminations.
- A paper which summarizes and analyses all results of this study has been submitted for publication.

Thank you!

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Bundesallee 100 38116 Braunschv Viacheslav Moros E-Mail: viacheslav www.ptb.de

38116 Braunschweig Viacheslav Morosh E-Mail: viacheslav.morosh@ptb.de www.ptb.de